
COMPRESS: Create an Adabas File

This chapter covers the following topics:

Optional Parameters and Subparameters

Essential Data Definition Syntax

Optional Field Definition Statements

ADACMP COMPRESS Examples

Optional Parameters and Subparameters
CODE: Cipher Code

If the data is to be loaded into the database in ciphered form, the cipher code must be specified
with this parameter. See the Adabas Security documentation for additional information on the
use of ciphering.

1

COMPRESS: Create an Adabas FileCOMPRESS: Create an Adabas File

DEVICE: Device Type

ADACMP calculates and displays a report of this run’s space requirements for each specified
device type. If DEVICE= is not specified, the default is the ADARUN device type.

FACODE: Alphanumeric Field Encoding

FACODE must be specified if you want to define UES file encoding for alphanumeric fields in
the file. The alphanumeric encoding must belong to the EBCDIC encoding family; that is, the
space character is X’40’.

FDT: Use Existing Adabas Field Definition Table

An existing Adabas FDT is to be used. The FDT may be that of an existing file or a file that has
been deleted with the KEEPFDT option of the ADADBS utility.

The input data must be consistent with the structure as defined in the specified FDT, unless the
FORMAT parameter is used. When the FDT defines multiple-value fields or periodic groups,
length values must be defined or already included in the FDT; refer to the sections
Multiple-Value Field Count and Periodic Group Field Count.

If the FDT parameter is used, any field definitions specified will be ignored.

FILE: File Number

If the FDT contains a hyperdescriptor, this parameter must be specified. The specified file
number becomes input for the related hyperexit. For more information about hyperexits, refer to
the Adabas DBA Referencedocumentation.

User exit 6 is always supplied with this file number. If FILE is not specified, a value of zero is
assumed.

FORMAT: Input Record Format Definition

Use this parameter to provide a format definition that indicates the location, format, and length
of fields in the input record. The format provided must follow the rules for format buffer entries
for update commands as described in the Adabas Command Reference documentation.

Conversion rules are those described for Adabas update commands in the Adabas Command
Reference documentation. For conversion of SQL null (NC option) field values, see NC: SQL
Null Value Option. If a field is omitted in the FORMAT parameter, that field is assigned no
value.

If the FORMAT parameter is omitted, the input record is processed in the order of the field
definition statements provided or, if the FDT parameter is used, according to an existing Adabas
field definition table.

FUWCODE: Wide-Character Field Default User Encoding

FUWCODE defines the default user encoding for wide-character fields for the file when loaded
in the database. If this parameter is omitted, the encoding is taken from the UWCODE definition
of the database.

2

Optional Parameters and SubparametersCOMPRESS: Create an Adabas File

FWCODE: Wide-Character Field Encoding

If fields with format W (wide-character) exist in the compressed file, you must specify
FWCODE to define the file encoding for them.

FWCODE also determines the maximum byte length of the wide-character field.

LRECL: Input Record Length (VSE Only)

If RECFM=F or RECFM=FB is specified, this parameter must also be specified to provide the
record length (in bytes) of the input data; otherwise, do not specify LRECL.

For z/OS or OS/390, the record length is taken from the input dataset label or DD statement.

For BS2000, the record length is taken from the catalog entry or /FILE statement.

MAXPE191: Enable Periodic Group Count Up to 191

Periodic groups can have up to 191 occurrences. The limit of 191 is allowed by the nucleus
without further specification; however, to compress records with more than 99 periodic group
occurrences, the parameter MAXPE191 must be specified.

Note:
This option is not compatible with Adabas 5.2 releases; therefore, backward conversion to
Adabas 5.2 is not possible once records with more than 99 PE group occurrences have been
loaded.

MINISN: Starting ISN

For automatic ISN assignment, MINISN defines the lowest ISN to be used. If MINISN is not
specified, the default is 1. If USERISN is specified, MINISN cannot be specified.

NOUSERABEND: Termination Without ABEND

When an error is encountered while the function is running, the utility prints an error message
and terminates with user ABEND 34 (with a dump) or user ABEND 35 (without a dump).

If NOUSERABEND is specified, the utility will not ABEND after printing the error message.
Instead, the message "utility TERMINATED DUE TO ERROR CONDITION" is displayed and
the utility terminates with condition code 20.

NUMREC: Number of Records to Be Processed

Specifies the number of input records to be processed. If this parameter is omitted, all input
records contained on the input dataset are processed.

Software AG recommends using this parameter for the initial ADACMP execution if a large
number of records are contained on the input dataset. This avoids unneeded processing of all
records when a field definition error or invalid input data results in a large number of rejected
records. This parameter is also useful for creating small files for test purposes.

Setting NUMREC to zero (0) prevents the input dataset from being opened.

3

COMPRESS: Create an Adabas FileOptional Parameters and Subparameters

PASSWORD: Password for FDT File

If the FDT parameter is specified and the file is password-protected, this parameter must be used
to provide a valid password for that file.

RECFM: Input Record Format (VSE Only)

You must specify the input record format with this parameter as follows:

F fixed length, unblocked (requires that you also specify the
LRECL parameter)

FB fixed length, blocked (requires that you also specify the
LRECL parameter)

V variable length, unblocked

VB variable length, blocked

U undefined

Under z/OS or OS/390, the record format is taken from the input dataset label or DD statement.

Under BS2000, the record format is taken from the catalog entry or FILE statement.

UACODE: User Encoding for Input Alphanumeric Fields

UACODE defines the user encoding of the sequential input of alphanumeric fields. If you
specify UACODE, you must also specify FACODE.

UARC: Architecture for Input Uncompressed User Data

The UARC parameter specifies the architecture of the sequential input of the uncompressed user
data. The "userdata-architecture-key" is an integer which is of the sum of the following
numbers:

byte order b=0 high-order byte first

 b=1 low-order byte first

encoding family e=0 ASCII encoding family

 e=2 EBCDIC encoding family (default)

floating-point
format

f=0 IBM370 floating-point format

 f=4 VAX floating-point format

 f=8 IEEE floating-point format

The default is ARC = b + e + f = 2; that is, high-order byte first; EBCDIC encoding family; and
IBM370 floating-point format (b=0; e=2; f=0).

4

Optional Parameters and SubparametersCOMPRESS: Create an Adabas File

User data from an Intel386 PC provides the example: b=1; e=0; f=8; or ARC=9.

USERISN: User ISN Assignment

The ISN for each record is to be provided by the user. If this parameter is omitted, the ISN for
each record is assigned by Adabas.

If USERISN is specified, the user must provide the ISN to be assigned to each record as a
four-byte binary number immediately preceding each data record. If the MINISN parameter is
specified, USERISN cannot be specified.

The format for fixed or undefined length input records with user-defined ISNs is:

userisn / data

The format for variable-length input records with user-defined ISNs is

length / xx / userisn / data

where

length is a two-byte binary physical record length (length of record
data, plus 8 bytes).

xx is a two-byte field containing binary zeros.

userisn is a four-byte binary ISN to be assigned to the record.

data is input record data.

ISNs may be assigned in any order, must be unique (for the file), and must not exceed the
MAXISN setting specified for the file (see the ADALOD utility).

ADACMP does not check for unique ISNs or for ISNs that exceed MAXISN. These checks are
performed by the ADALOD utility.

UWCODE: User Encoding for Input Wide-Character Fields

UWCODE defines the user encoding of the sequential input of wide-character fields. If you
specify UWCODE, you must also specify FWCODE.

For user input, all wide-character fields are encoded in the same code page. It is not possible to
select different encodings for different fields in the same ADACMP run.

Essential Data Definition Syntax
The field definitions provided as input to ADACMP are used to

provide the length and format of each field contained in the input record. This enables ADACMP to
determine the correct field length and format during editing and compression;

create the field definition table (FDT) for the file. This table is used by Adabas during the execution
of Adabas commands to determine the logical structure and characteristics of any given field (or
group) in the file.

5

COMPRESS: Create an Adabas FileEssential Data Definition Syntax

The following syntax must be followed when entering field definitions. A minimum of one and a
maximum of 926 definitions may be specified.

Field FNDEF=’level , name[, length , format][{, option }...]’

Group FNDEF=’level , name[,PE [(n)]]’

Collation
descriptor

COLDE=’number , name[,UQ [,XI]]= parentfield ’

Hyperdescriptor HYPDE=’number , name, length , format [{, option }...]={ parentfield },...’

Phonetic
descriptor

PHONDE=’name(field)’

Subdescriptor SUBDE=’name[,UQ [,XI]]= parentfield (begin , end)’

Subfield SUBFN=’name=parentfield(begin , end)’

Superdescriptor SUPDE=’name[,UQ [,XI]]= parentfield (begin , end)},...’

Superfield SUPFN=’name={ parentfield (begin , end)} ,...’

User comments may be entered to the right of each definition. At least one blank must be present between
a definition and any user comments.

FNDEF: Field/Group Definition

This parameter is used to specify an Adabas field (data) definition. The syntax used in
constructing field definition entries is

Level number and name are required. Any number of spaces may be inserted between definition
entries.

level

The level number is a one- or two-digit number in the range 01-07 (the leading zero is optional)
used in conjunction with field grouping. Fields assigned a level number of 02 or greater are
considered to be a part of the immediately preceding group which has been assigned a lower
level number.

The definition of a group enables reference to a series of fields (may also be only 1 field) by
using the group name. This provides a convenient and efficient method of referencing a series of
consecutive fields.

Level numbers 01-06 may be used to define a group. A group may consist of other groups.
When assigning the level numbers for nested groups, no level numbers may be skipped.

6

Essential Data Definition SyntaxCOMPRESS: Create an Adabas File

FNDEF=’01,GA’ group

FNDEF=’02,A1,...’ elementary or multiple-value field

FNDEF=’02,A2,...’ elementary or multiple-value field

FNDEF=’01,GB’ group

FNDEF=’02,B1,...’ elementary or multiple-value field

FNDEF=’02,GC’ group (nested)

FNDEF=’03,C1,...’ elementary or multiple-value field

FNDEF=’03,C2,...’ elementary or multiple-value field

Fields A1 and A2 are in group GA. Field B1 and group GC (consisting of fields C1 and C2) are
in group GB.

name

The name to be assigned to the field (or group).

Names must be unique within a file. The name must be two characters long: the first character
must be alphabetic; the second character can be either alphabetic or numeric. No special
characters are permitted.

The values E0-E9 are reserved as edit masks and may not be used.

Valid Names Invalid Names

AA A (not two characters)

B4 E3 (edit mask)

S3 F* (special character)

WM 6M (first character not alphabetic)

length

The length of the field (expressed in bytes). The length value is used to

indicate to ADACMP the length of the field as it appears in each input record; and

define the standard (default) length to be used by Adabas during command processing.

The standard length specified is entered in the FDT and is used when the field is read/updated
unless the user specifies a length override.

The maximum field lengths that may be specified depend on the "format" value:

7

COMPRESS: Create an Adabas FileEssential Data Definition Syntax

Format Maximum Length

Alphanumeric (A) 253 bytes

Binary (B) 126 bytes

Fixed Point (F) 4 bytes (always exactly 2 or 4 bytes)

Floating Point (G) 8 bytes (always exactly 4 or 8 bytes)

Packed Decimal (P) 15 bytes

Unpacked Decimal
(U)

29 bytes

Wide-character (W) 253 bytes*

* Depending on the FWCODE attribute value, the maximum byte length of the W field may be
less than 253. For example, if the default value of FWCODE is used (that is, Unicode), the
maximum length is 252 (2 bytes per character).

Standard length may not be specified with a group name.

Standard length does not limit the size of any given field value unless the FI option is used - see
FI: Fixed Storage . A read or update command may override the standard field length, up to the
maximum length permitted for that format.

If standard length is zero for a field, the field is assumed to be a variable-length field.
Variable-length fields have no standard (default) length. A length override for fixed-point (F)
fields can specify a length of two or four bytes only; for floating-point (G) fields, the override
can specify four or eight bytes only.

If a variable-length field is referenced without a length override during an Adabas command, the
value in the field will be returned preceded by a one-byte binary length field (including the
length byte itself). This length value must be specified when the field is updated, and also in the
input records that are to be processed by ADACMP. If the field is defined with the long alpha
(LA) option, the value is preceded by a two-byte binary length field (including the two length
bytes).

format

The standard format of the field (expressed as a one-character code):

A Alphanumeric (left-justified)

B Binary (right-justified, unsigned/positive)

F Fixed point (right-justified, signed, two’s complement notation)

G Floating point (normalized form, signed)

P Packed decimal (right-justified, signed)

U Unpacked decimal (right-justified, signed)

W Wide character (left-justified)

8

Essential Data Definition SyntaxCOMPRESS: Create an Adabas File

The standard format is used to

indicate to ADACMP the format of the field as it appears in each input record; and

define the standard (default) format to be used by Adabas during command processing. The
standard format specified is entered in the FDT and is used when the field is read/updated
unless the user specifies a format override.

Standard format must be specified for a field. It may not be specified with a group name. When
the group is read (written), the fields within the group are always returned (must be provided)
according to the standard format of each individual field. The format specified determines the
type of compression to be performed on the field.

A fixed-point field is either two or four bytes long. A positive value is in normal form, and a
negative value in two’s complement form.

A field defined with floating-point format may be either four bytes (single precision) or eight
bytes (double precision) long. Conversion of a value of a field defined as floating point to
another format is supported.

If a binary field is to be defined as a descriptor, and the field may contain both positive and
negative numbers, "F" format should be used instead of "B" format because "B" format assumes
that all values are unsigned (positive).

Like an alphanumeric field, a wide-character field may be a standard length in bytes defined in
the FDT, or variable length. Any non-variable format override for a wide-character field must be
compatible with the user encoding; for example, a user encoding in Unicode requires an even
length. Format conversion from numbers (U, P, B, F, G) to wide-character format is not
allowed.

Data Definition Field/Group Options

Options are specified by the two-character codes. These codes may be specified in any order,
separated by a comma.

9

COMPRESS: Create an Adabas FileEssential Data Definition Syntax

Code Option

DE (Descriptor) Field is to be a descriptor (key).

FI (Fixed Storage) Field is to have a fixed storage length; values are
stored without an internal length byte, are not
compressed, and cannot be longer than the defined
field length.

LA (Long Alpha
Option)

This A or W format variable-length field may
contain a value up to 16,381 bytes long.

MU (Multiple-Value
Field)

Field may contain up to 191 values in a single
record.

NC (SQL Null Value
Option)

Field may contain a null value that satisfies the
SQL interpretation of a field having no value; that
is, the field’s value is not defined (not counted).

NU (Null Value
Suppression)

Null values occurring in the field are to be
suppressed.

NV (No Conversion) This A or W format field is to be processed in the
record buffer without being converted.

PE (Periodic Group) Group field is to be followed by a periodic group
definition that may occur up to 191 times in a given
record.

NN (SQL Not Null
Option)

Field defined with NC option must always have a
value defined; it cannot contain an SQL null (not
null).

UQ (Unique Descriptor) Field is to be a unique descriptor; that is, for each
record in the file, the descriptor must have a
different value.

XI (Exclude Instance
Number)

For this field, the index (occurrence) number is
excluded from the UQ option set for a PE.

DE: Descriptor

DE indicates that the field is to be a descriptor (key). Entries will be made in the Associator
inverted list for the field, enabling the field to be used in a search expression, as a sort key in a
FIND command, to control logical sequential reading, or as the basis for file coupling.

The descriptor option should be used judiciously, particularly if the file is large and the field that
is being considered as a descriptor is updated frequently.

Although the definition of a descriptor field is independent of the record structure, note that if a
descriptor field is not ordered first in a record and logically falls past the end of the physical
record, the inverted list entry for that record is not generated for performance reasons. To
generate the inverted list entry in this case, it is necessary to unload short, decompress, and
reload the file; or use an application program to reorder the field first for each record of the file.

10

Essential Data Definition SyntaxCOMPRESS: Create an Adabas File

FI: Fixed Storage

FI indicates that the field is to have a fixed storage length. Values in the field are stored without
an internal length byte, are not compressed, and cannot be longer than the defined field length.

The FI option is recommended for fields with a length of one or two bytes that have a low
probability of containing a null value (personnel number, gender, etc.) and for fields containing values that
cannot be compressed.

The FI option is not recommended for multiple-value fields, or for fields within a periodic
group. Any null values for such fields are not suppressed (or compressed), which can waste disk storage
space and increase processing time.

The FI option cannot be specified for

U-format fields;

NC, NN, or NU option fields;

variable-length fields defined with a length of zero (0) in the FNDEF statement;

a descriptor within a periodic (PE) group.

A field defined with the FI option cannot be updated with a value that exceeds the standard
length of the field.

Example of FI usage:

 Definition User Data Internal Representation

Without FI
Option

FNDEF=’01,AA,3,P’ 33104C
00003C

0433104F (4 bytes) 023F
(2 bytes)

With FI
Option

FNDEF=’01,AA,3,P,FI’ 33104C
00003C

33104F (3 bytes) 00003F
(3 bytes)

LA: Long Alpha Option

The LA (long alphanumeric) option can be specified for variable-length alphanumeric and wide
format fields; i.e., A or W format fields having a length of zero in the field definition (FNDEF).
With the LA option, such a field can contain a value up to 16,381 bytes long.

An alpha or wide field with the LA option is compressed in the same way as an alpha or wide
field without the option. The maximum length that a field with LA option can actually have is
restricted by the block size where the compressed record is stored.

When a field with LA option is updated or read, its value is either specified or returned in the
record buffer, preceded by a two-byte length value that is inclusive (field length, plus two).

A field with LA option

can also have the NU, NC/NN, or MU option;

11

COMPRESS: Create an Adabas FileEssential Data Definition Syntax

can be a member of a PE group;

cannot have the FI option;

cannot be a descriptor field;

cannot be a parent of a sub-/superfield, sub-/superdescriptor, hyperdescriptor, or phonetic
descriptor; and

cannot be specified in the search buffer, or response code 61 occurs.

For more information, see the Adabas Command Reference Documentaton section Specifying a
Field with LA (Long Alpha) Option in the section 2 discussion of the record buffer.

Example of LA usage:

 Definition User Data Internal Representation

Without LA
Option

FNDEF=’01,BA,0,A’ X’06’,C’HELLO’
--

X’06C8C5D3D3D6’
(1-byte length) --

With LA Option FNDEF=’01,BA,0,A,LA’ X’0007’,C’HELLO’
X’07D2’,C’ ...
(2000 data bytes) ...’

X’06C8C5D3D3D6’
(1-byte length) X’87D2
...
(2000 data bytes) ... ’

MU: Multiple-Value Field

MU indicates that the field may contain more than one value in a single record. The actual
number of values present in each record may vary from 0 to 191, although at least one value
(even if null) must be present in each record input to ADACMP.

The values are stored according to the other options specified for the field. The first value is
preceded by a count field that indicates the number of values currently present for the field. The
number of values that are stored is equal to the number of values provided in the ADACMP
input record, plus any values added during later updating of the field, less any values suppressed
(this applies only if the field is defined with the NU option).

If the number of values contained in each record input to ADACMP is constant, the number can
be specified in the MU definition statement in the form MU(n), where "n" equals the number of
values present in each input record. For example:

FNDEF=’01,AA,5,A,MU(3)’

indicates that three values of the multiple-value field AA are present in each input record.
Specifying a value of zero (0) indicates that no values are present for the multiple-value field in
the input record.

If the number of values is not constant for all input records, a one-byte binary count field must
precede the first value in each input record to indicate the number of values present in that
record (see also the section Input Data Requirements).

12

Essential Data Definition SyntaxCOMPRESS: Create an Adabas File

If the FDT is provided (see the FDT parameter description in the COMPRESS Optional
Parameters and Subparameters section), the field count must be contained as a one-byte binary
value in each input record.

If the input records were created using the DECOMPRESS function, all required count fields
are already contained in the input record. In this case, the count must not be specified in the field
definition statement.

All values provided during input or updating will be compressed (unless the FI option has also
been specified). Care should be taken when using the FI and MU options together since a large amount of
disk storage may be wasted if a large number of compressible values are present.

If the NU option is specified with the MU option, null values are both logically and physically
suppressed. The positional relationship of all values (including null values) is maintained in MU
occurrences, unless the occurrences are defined with the NU option. If a large number of null values are
present in an MU field group, the NU option can reduce the disk storage requirements for the field but
should not be used if the relative positions of the values must be maintained.

The NC (or NC/NN) option cannot be specified for an MU field.

Example of MU usage with NU:

FNDEF=’01,AA,5,A,MU,NU’

The original content where "L" is the length of the "value" is

after file loading:

3 L value A L value B L value C

count AA1 AA2 AA3

after update of value B to null value:

2 L value A L value C

count AA1 AA2

Example of MU usage without NU:

FNDEF=’01,AA,5,A,MU’

The original content where "L" is the length of the "value" is

after file loading:

3 L value A L value B L value C

count AA1 AA2 AA3

after update of value B to null value:

13

COMPRESS: Create an Adabas FileEssential Data Definition Syntax

3 L value A L value B L value C

count AA1 AA2 AA3

NU: Null Value Suppression

NU suppresses null values occurring in the field.

Normal compression (NU or FI not specified) represents a null value with two bytes (the first
for the value length, and the second for the value itself, in this case a null). Null value
suppression represents an empty field with a one-byte "empty field" indicator. The null value
itself is not stored.

A series of consecutive fields containing null values and specifying the NU option is represented
by a one-byte "empty field" (binary 11nnnnnn) indicator, where "nnnnnn" is the number of the
fields’ successive bytes containing null values, up to a total of 63. For this reason, fields defined
with the NU option should be grouped together whenever possible.

If the NU option is specified for a descriptor, any null values for the descriptor are not stored in
the inverted list. Therefore, a find command in which this descriptor is used and for which a null
value is used as the search value will always result in no records selected, even though there
may be records in Data Storage that contain a null value for the descriptor. If a descriptor
defined with the NU option is used to control a logical sequence in a read logical sequence
(L3/L6) command, those records that contain a null value for the descriptor will not be read.

Descriptors to be used as a basis for file coupling and for which a large number of null values
exist should be specified with the NU option to reduce the total size of the coupling lists.

The NU option cannot be specified for fields defined with the combined NC/NN options or with
the FI option.

Example of NU usage:

 Definition User
Data

Internal
Representation

Normal
Compression

FNDEF=’01,AA,2,B’ 0000 0200 (2 bytes)

With FI Option FNDEF=’01,AA,2,B,FI’ 0000 0000 (2 bytes)

With NU Option FNDEF=’01,AA,2,B,NU’ 0000 C1 (1 byte)*

* C1 indicates 1 empty field.

NV: No Conversion

The "do not convert" option for alphanumeric (A) or wide-character (W) format fields specifies
that the field is to be processed in the record buffer without being converted.

Fields with the NV option are not converted to or from the user: the field has the characteristics
of the file encoding; that is, the default blank

14

Essential Data Definition SyntaxCOMPRESS: Create an Adabas File

for A fields, is always the EBCDIC blank (X’40’); and

for W fields, is always the blank in the file encoding for W format.

The NV option is used for fields containing data that cannot be converted meaningfully or
should not be converted because the application expects the data exactly as it is stored.

The field length for NV fields is byte-swapped if the user architecture is byte-swapped.

For NV fields, "A" format cannot be converted to "W" format and vice versa.

PE: Periodic Group

PE indicates that a periodic group is to be defined. A periodic group

may comprise one or more fields. A maximum of 254 elementary fields may be specified.
Descriptors and/or multiple value fields and other groups may be specified, but a periodic
group may not contain another periodic group.

may occur from 0 to 99 (or 191, if the ADACMP MAXPE191 parameter is specified) times
within a given record, although at least one occurrence (even if it contains all null values)
must be present in each ADACMP input record.

must be defined at the 01 level. All fields in the periodic group must immediately follow
and must be defined at level 02 or higher (in increments of 1 to a maximum of 7). The next
01 level definition indicates the end of the current periodic group.

may only be specified with a group name. Length and format parameters may not be
specified with the group name.

Following are two examples of period group definition:

Periodic Group "GA":

FNDEF=’01,GA,PE’
FNDEF=’02,A1,6,A,NU’
FNDEF=’02,A2,2,B,NU’
FNDEF=’02,A3,4,P,NU’

Periodic Group "GB":

FNDEF=’01,GB,PE(3)’
FNDEF=’02,B1,4,A,DE,NU’
FNDEF=’02,B2,5,A,MU(2),NU’
FNDEF=’02,B3’
FNDEF=’03,B4,20,A,NU’
FNDEF=’03,B5,7,U,NU’

UQ: Unique Descriptor

UQ indicates that the field is to be a unique descriptor. A unique descriptor must contain a
different value for each record in the file. In FNDEF statements, the UQ option can only be
specified if the DE option is also specified. The UQ option can also be used in SUBDE,
SUPDE, and HYPDE statements.

15

COMPRESS: Create an Adabas FileEssential Data Definition Syntax

The UQ option must be specified if the field is to be used as an ADAM descriptor (see the
ADAMER utility).

ADACMP does not check for unique values; this is done by the ADALOD utility, or by the
ADAINV utility when executing the INVERT function. If a non-unique value is detected during file
loading, ADALOD terminates with an error message.

Because ADAINV and ADALOD must execute separately for each file in an expanded file
chain, they cannot check for uniqueness across the chain.

However, Adabas does checks the value of unique descriptors across an expanded file chain. If
the value being added (N1/N2) or updated (A1) is not unique across all files within the chain, response
code 198 is returned.

XI: Exclude Instance Number

By default, the occurrence number of fields within periodic groups (PE) defined as unique
descriptors (UQ) is included as part of the descriptor value. This means that the same field value can occur
in different periodic group occurrences in different records.

The XI option is used to exclude the occurrence number from the descriptor value for the
purpose of determining the the value’s uniqueness. If the XI option is set, any field value can occur at
most once over all occurrences of the PE field in all records.

Representing SQL Null Values

Adabas includes two data definition options, NC and NN, to provide SQL-compatible null
representation for Software AG’s mainframe Adabas SQL Server (ESQ) and other Structured
Query Language (SQL) database query languages.

The NC and NN options cannot be applied to fields defined

with Adabas null suppression (NU)

with fixed-point data type (FI)

with multiple-values (MU)

within a periodic group (PE)

as group fields

In addition, the NN option can only be specified for a field that specifies the NC option.

A parent field for sub-/superfields or sub-/superdescriptors can specify the NC option. However,
parent fields for a single superfield or descriptor cannot use a mix of NU and NC fields. If any
parent field is NC, no other parent field can be an NU field, and vice versa.

Examples:

A correct ADACMP COMPRESS FNDEF statement for defining the field AA and assigning the
NC and NN option:

16

Essential Data Definition SyntaxCOMPRESS: Create an Adabas File

ADACMP FNDEF=’01,AA,4,A,NN,NC,DE’

Incorrect uses of the NC/NN option that would result in an ADACMP utility ERROR-127:

Incorrect Example Reason

ADACMP
FNDEF=’01,AA,4,A,NC,NU’

NU and NC options are not compatible

ADACMP
FNDEF=’01,AB,4,A,NC,FI’

NC and FI options are not compatible

ADACMP FNDEF=’01,PG,PE’
ADACMP FNDEF=’02,P1,4,A,NC’

NC option within a PE group is not
allowed

NC: SQL Null Value Option

Without the NC (not counted) option, a null value is either zero or blank depending on the
field’s format.

With the NC option, zeros or blanks specified in the record buffer are interpreted according to
the "null indicator" value: either as true zeros or blanks (that is, as "significant" nulls) or as
undefined values (that is, as true SQL or "insignificant" nulls).

If the field defined with the NC option has no value specified in the record buffer, the field
value is always treated as an SQL null.

When interpreted as a true SQL null, the null value satisfies the SQL interpretation of a field
having no value. This means that no field value has been entered; that is, the field’s value is not
defined.

The null indicator value is thus responsible for the internal Adabas representation of the null.
For more information, see the following section Null Indicator Value and the section Search
Buffer Syntax in the Adabas Command Reference documentation.

The following rules apply when compressing or decompressing records containing NC fields:

1. If the FORMAT parameter is specified, ADACMP behaves in the same way the nucleus
does for update-type commands. See the Adabas Command Reference documentation.

2. If the FORMAT parameter is not specified

for compression

Only the value of the NC field is placed in the input record; the two null value
indicator bytes must be omitted. The value is compressed as if the null value indicator
bytes were set to zero. It is not possible to assign a null value to an NC field using this
method.

Example:

17

COMPRESS: Create an Adabas FileEssential Data Definition Syntax

Field Definition Table
(FDT) definition

FNDEF=’01,AA,4,A,NC’

Input record contents: MIKE

for decompression

If the value of an NC field is not significant, the record is written to DDFEHL (or
FEHL) with response code 55.

If the value of an NC field is significant, the value is decompressed as usual. There are
no null indicator bytes.

Example:

Field Definition Table
(FDT) definition

FNDEF=’01,AA,4,A,NC’

Output record contents MIKE

Null Indicator Value

The null indicator value is always two bytes long and has fixed-point format, regardless of the
data format. It is specified in the record buffer when a field value is added or changed; it is
returned in the record buffer when the field value is read.

For an update (Ax) or add (Nx) command, the null indicator value must be set in the record
buffer position that corresponds to the field’s designation in the format buffer. The setting must
be one of the following:

Hex Value Indicates that . . .

FFFF the field’s value is set to "undefined", an insignificant null; the
differences between no value, binary zeros, or blanks for the
field in the record buffer are ignored; all are interpreted
equally as "no value".

0000 no value, binary zeros, or blanks for the field in the record
buffer are interpreted as significant null values.

For a read (Lx) or find with read (Sx with format buffer entry) command, your program must
examine the null indicator value (if any) returned in the record buffer position corresponding to
the field’s position in the format buffer. The null indicator value is one of the following values,
indicating the meaning of the actual value that the selected field contains:

18

Essential Data Definition SyntaxCOMPRESS: Create an Adabas File

Hex Value Indicates that . . .

FFFF a zero or blank in the field is not significant.

0000 a zero or blank in the field is a significant value; that is, a true
zero or blank.

xxxx the field is truncated. The null indicator value contains the
length (xxxx) of the entire value as stored in the database
record.

Example:

The field definition of a null represented in a two-byte Adabas binary field AA defined with the
NC option is

01,AA,2,B,NC

For a . . . Null Indicator
Value
(Record Buffer)

Data Adabas Internal
Representation

non-zero value 0 (binary value is
significant)

0005 0205

blank 0 (binary null is
significant)

0000 (zero) 0200

null FFFF (binary null
is not significant)

(not
relevant)

C1

NN: SQL Not Null Option

The NN ("not null" or "null value not allowed") option may only be specified when the NC
option is also specified for a data field. The NN option indicates that an NC field must always
have a value (including zero or blank) defined; it cannot contain "no value".

The NN option ensures that the field will not be left undefined when a record is added or
updated; a significant value must always be set in the field. Otherwise, Adabas returns a
response code 52.

The following example shows how an insignificant null would be handled in a two-byte Adabas
alphanumeric field AA when defined with and without the NN option:

Example:

An insignificant null handled in a two-byte Adabas alphanumeric field AA when defined with
and without the NN option is as following:

19

COMPRESS: Create an Adabas FileEssential Data Definition Syntax

Option Field
Definition

Null Indicator
Value

Adabas Internal
Representation

With NN 01,AA,2,A,NC,NN FFFF (insignificant
null)

none; response code 52
occurs

Without
NN

01,AA,2,A,NC FFFF (insignificant
null)

C1

Optional Field Definition Statements
COLDE: Collation Descriptor Definition

The collation descriptor option enables descriptor values to be sorted (collated) based on a
user-supplied algorithm.

The values are based on algorithms coded in special collation descriptor user exits (CDX01
through CDX08). Each collation descriptor must be assigned to a user exit, and a single user exit
may handle multiple collation descriptors.

Example:

The Collation Exit functions are called on the following events:

INITIALIZE function

nucleus session start

utility initialization when collation exits have been defined (ADARUN parameters)

ENCODE function

update/insert/delete of the parent’s value (Nucleus)

Search specifying the collation descriptor with the search value (Nucleus)

compression of a record (ADACMP)

DECODE function

Read Index (L9) by Collation DE, only if the exit supports the DECODE function
(Nucleus)

Input parameters supplied to the user exit are described in the Adabas DBA Reference
documentation, section User Exits. They include

20

Optional Field Definition StatementsCOMPRESS: Create an Adabas File

address and length of input string

address and size of output area

address of fullword for the returned output string length

The user exit sets the length of the returned output string.

See the ADARUN parameter CDXnn in the Adabas Operations documentation for more
information.

Notes:

1. A collation descriptor can be defined for an alphanumeric (A) or wide alphanumeric (W)
parent field. The format, length, and options (except UQ and XI) are taken from the parent
field defined in the COLDE parameter. The unique descriptor (UQ) and exclude index (XI)
options are separately defined for the collation descriptor itself.

2. A search using a collation descriptor value is performed in the same manner as for standard
descriptors.

3. The user is responsible for creating correct collation descriptor values. There is no standard
way to check the values of a collation descriptor for completeness against the Data Storage.
The maintenance utility ADAICK only checks the structure of an index, not the contents.
The user must set the rules for each value definition and check the value for correctness.

4. If a file contains more than one collation descriptor, the assigned exits are called in the
alphabetical order of the collation descriptor names.

Collation Descriptor Syntax

A collation descriptor is defined using the following syntax:

where

number is the user exit number to be assigned to the collation descriptor.
The Adabas nucleus uses this number to determine the collation
descriptor user exit to be called.

name is the name to be used for the collation descriptor. The naming
conventions for collation descriptors are identical to those for
Adabas field names.

UQ indicates that the unique descriptor option is to be assigned to the
collation descriptor.

XI indicates that the uniqueness of the collation descriptor is to be
determined with the index (occurrence) number excluded.

parent-field is the name of an elementary A or W field. A collation descriptor
can have one parent field. The field name and address is passed to
the user exit.

21

COMPRESS: Create an Adabas FileOptional Field Definition Statements

MU, NU, and PE options are taken from the parent field and are implicitly set in the collation
descriptor.

If a parent field with the NU option is specified, no entries are made in the collation descriptor’s
inverted list for those records containing a null value for the field. This is true regardless of the presence
or absence of values for other collation descriptor elements.

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated, for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an application
program to initialize the field for each record of the file.

Collation Descriptor Definition Example:

Field definition:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name

Collation descriptor definition:

COLDE=’1,Y2=LN’

Collation descriptor user exit 1 (CDX01) is assigned to this collation descriptor, and the
name is Y2.

The collation descriptor length and format are taken from the parentfield: 20 and
alphanumeric, respectively. The collation descriptor is a multiple value (MU) field with
null suppression (NU).

The values for the collation descriptor are to be derived from the parentfield LN.

HYPDE: Hyperdescriptor Definition

The hyperdescriptor option enables descriptor values to be generated, based on a user-supplied
algorithm.

The values are based on algorithms coded in special hyperdescriptor user exits (HEX01 through
HEX31). Each hyperdescriptor must be assigned to a user exit, and a single user exit may handle
multiple hyperdescriptors.

Example:

The exit is called whenever a hyperdescriptor value is to be generated by the Adabas nucleus or
by the ADACMP utility.

22

Optional Field Definition StatementsCOMPRESS: Create an Adabas File

Input parameters supplied to the user exit are

hyperdescriptor name

file number

addresses of fields taken from the Data Storage record, together with field name and PE
index (if applicable). These addresses point to the compressed values of the fields. The
names of these fields must be defined using the HYPDE parameter of ADACMP or
ADAINV.

The user exit must return the descriptor value(s) (DVT) in compressed format. No value, or one
or more values may be returned depending on the options (PE, MU) assigned to the
hyperdescriptor.

The original ISN assigned to the input value(s) may be changed.

See the Adabas DBA Reference documentation, section User Exits, for more information about
the hyperdescriptor user exit.

Notes:

1. The format, the length, and the options of a hyperdescriptor are user-defined. They are not
taken from the parent fields defined in the HYPDE parameter.

2. A search using a hyperdescriptor value is performed in the same manner as for standard
descriptors.

3. The user is responsible for creating correct hyperdescriptor values. There is no standard
way to check the values of a hyperdescriptor for completeness against the Data Storage.
The maintenance utility ADAICK only checks the structure of an index, not the contents.
The user must set the rules for each value definition and check the value for correctness.

4. If a hyperdescriptor is defined as packed or unpacked format, Adabas checks the returned
values for validity. The sign half-byte for packed values can contain A, C, E, F (positive) or
B, D (negative). Adabas converts the sign to F or D.

5. If a file contains more than one hyperdescriptor, the assigned exits are called in the
alphabetical order of the hyperdescriptor names.

Hyperdescriptor Syntax

A hyperdescriptor is defined using the following syntax:

where

23

COMPRESS: Create an Adabas FileOptional Field Definition Statements

number is the user exit number to be assigned to the hyperdescriptor. The
Adabas nucleus uses this number to determine the hyperdescriptor
user exit to be called.

name is the name to be used for the hyperdescriptor. The naming
conventions for hyperdescriptors are identical to those for Adabas
field names.

length is the default length of the hyperdescriptor.

format is the format of the hyperdescriptor:

Format Maximum Length

Alphanumeric (A) 253 bytes

Binary (B) 126 bytes

Fixed Point (F) 4 bytes (always 4 bytes)

Floating Point (G) 8 bytes (always 4 or 8 bytes)

Packed Decimal (P) 15 bytes

Unpacked Decimal
(U)

29 bytes

Note:
Wide-character (W) format is not valid for a hyperdescriptor.

option is an option to be assigned to the hyperdescriptor. The
following options may be used together with a hyperdescriptor:

MU multiple-value field

NU null-value suppression

PE field of a periodic group

UQ unique descriptor

parent-field is the name of an elementary field. A hyperdescriptor can have
1-20 parent fields. The field names and addresses are passed to the
user exit.

Note:
A hyperdescriptor parent-field may not have W (wide-character)
format.

If a parent field with the NU option is specified, no entries are made in the hyperdescriptor’s
inverted list for those records containing a null value for the field. This is true regardless of the
presence or absence of values for other hyperdescriptor elements.

24

Optional Field Definition StatementsCOMPRESS: Create an Adabas File

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated, for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an application
program to initialize the field for each record of the file.

Hyperdescriptor Definition Example:

Field definitions:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Hyperdescriptor definition:

HYPDE=’2,HN,60,A,MU,NU=LN,FN,FR’

Hyperdescriptor user exit 2 is assigned to this hyperdescriptor, and the name is HN.

The hyperdescriptor length is 60, the format is alphanumeric, and is a multiple-value (MU)
field with null suppression (NU).

The values for the hyperdescriptor are to be derived from fields LN, FN and FR.

The ADACMP HYPDE= statement may be continued on another line, as shown in the
following example. To do so, first specify a minus (-) after a whole argument and before the
closing apostrophe on the first line. Then enter the remaining positional arguments, beginning
after the statement name (ADACMP) enclosed in apostrophes on the following line:

ADACMP HYPDE=’1,HY,20,A=AA,BB,CC,-’
ADACMP ’DD,EE,FF’

PHONDE: Phonetic Descriptor

The use of a phonetic descriptor in a FIND command results in the return of all the records that
contain similar phonetic values. The phonetic value of a descriptor is based on the first 20 bytes
of the field value. Only alphabetic values are considered; numeric values, special characters, and
blanks are ignored. Lower- and uppercase alphanumeric characters are internally identical.

A phonetic descriptor is defined using the following syntax:

where

25

COMPRESS: Create an Adabas FileOptional Field Definition Statements

name is the name to be used for the phonetic descriptor. The naming
conventions for phonetic descriptors are identical to those for
Adabas field names.

field is the name of the field to be phoneticized.

The field must be

an elementary or a multiple value field; and

defined with alphanumeric format.

The field can be a descriptor.

The field cannot be

a subdescriptor, superdescriptor, or hyperdescriptor;

contained within a periodic group;

used as the source field for more than one phonetic descriptor.

format W (wide-character)

If the field is defined with the NU option, no entries are made in the phonetic descriptor’s
inverted list for those records that contain a null value (within the byte positions specified) for
the field. The format is the same as for the field.

If the field is not initialized and logically falls past the end of the physical record, the inverted
list entry for that record is not generated for performance reasons. To generate the inverted list
entry in this case, it is necessary to unload short, decompress, and reload the file; or use an
application program to initialize the field for each record of the file.

Phonetic Descriptor Definition Example:

Field definition:

FNDEF=’01,AA,20,A,DE,NU’

Phonetic definition:

PHONDE=’PA(AA)’

SUBDE: Subdescriptor Definition

A subdescriptor is a descriptor created from a portion of an elementary field. The elementary
field may or may not be a descriptor itself. A subdescriptor can also be used as a subfield; that
is, it can be specified in the format buffer to control the record’ss output format.

A subdescriptor definition is entered using the following syntax:

26

Optional Field Definition StatementsCOMPRESS: Create an Adabas File

where

name is the subdescriptor name. The naming conventions for a
subdescriptor are identical to those for Adabas field names.

UQ indicates that the subdescriptor is to be defined as unique (see the
definition of option UQ).

XI indicates that the uniqueness of the subdescriptor is to be
determined with the index (occurrence) number excluded.

parent-field is the name of the field from which the subdescriptor is to be
derived.

begin is the relative byte position within the parent field where the
subdescriptor definition is to begin.

end is the relative byte position within the parent field where the
subdescriptor definition is to end.

* Counting is from left to right beginning with 1 for alphanumeric or wide-character fields, and
from right to left beginning with 1 for numeric or binary fields. If the parent field is defined with P format,
the sign of the resulting subdescriptor value is taken from the 4 low-order bits of the low-order byte (that
is, byte 1).

A parent field of a subdescriptor can be

a descriptor

an elementary field

a multiple-value field (but not a particular occurrence of a multiple-value field)

contained within a periodic group (but not a particular occurrence of a periodic group)

A parent field or a subdescriptor cannot be

a sub/super field, subdescriptor, superdescriptor, or phonetic descriptor

format G (floating point)

If the parent field is defined with the NU option, no entries are made in the subdescriptor’s
inverted list for those records that contain a null value (within the byte positions specified) for
the field. The format is the same as for the parent field.

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file; or
use an application program to initialize the field for each record of the file.

27

COMPRESS: Create an Adabas FileOptional Field Definition Statements

Subdescriptor Definition Example 1:

Parent-field definition:

FNDEF=’01,AR,10,A,NU’

Subdescriptor definition:

SUBDE=’SB=AR(1,5)’

The values for subdescriptor SB are derived from the first five bytes (counting from left to right)
of all the values for the parent field AR. All values are shown in character format.

AR Values SB Values

DAVENPORT DAVEN

FORD FORD

WILSON WILSO

Subdescriptor Definition Example 2:

Parent-field definition:

FNDEF=’02,PF,6,P’

Subdescriptor definition:

SUBDE=’PS=PF(4,6)’

The values for subdescriptor PS are derived from bytes 4 to 6 (counting from right to left) of all
the values for the parent field PF. All values are shown in hexadecimal.

PF Values PS Values

00243182655F 02431F

00000000186F 0F (see note)

78426281448D 0784262D

Note:
If the NU option had been specified for parent field PF, no value would have been created for
PS for this value.

Subdescriptor Definition Example 3:

Source-field definition:

FNDEF=’02,PF,6,P’

Subdescriptor definition:

28

Optional Field Definition StatementsCOMPRESS: Create an Adabas File

SUBDE=’PT=PF(1,3)’

The values for PT are derived from bytes 1 to 3 (counting from right to left) of all the values for
PF. All values are shown in hexadecimal.

PF Values PT Values

00243182655F 82655F

00000000186F 186F

78426281448D 81448D

SUBFN: Subfield Definition

A subfield

is a portion of an elementary field that can be read using an Adabas read command;

cannot be updated;

can be changed to a subdescriptor using ADAINV INVERT SUBDE=... .

A subfield definition is entered using the following syntax:

where

name is the subfield name. The naming conventions for a
subfield are identical to those for Adabas field names.

parent-field is the name of the field from which the subfield is to be
derived.

begin* is the relative byte position within the parent field where
the subfield definition is to begin.

end* is the relative byte position within the parent field where
the subfield definition is to end.

* Counting is from left to right beginning with 1 for alphanumeric or wide-character fields, and
from right to left beginning with 1 for numeric or binary fields. If the parent field is defined with
"P" format, the sign of the resulting subfield value is taken from the 4 low-order bits of the
low-order byte (that is, byte 1).

The parent field for a subfield can be

a multiple-value field

within a periodic group

29

COMPRESS: Create an Adabas FileOptional Field Definition Statements

The parent field for a subfield cannot have format "G" (floating point).

Subfield Definition Example:

SUBFN=’X1=AA(1,2)’

SUPDE: Superdescriptor Definition

A superdescriptor is a descriptor created from several fields, portions of fields, or a combination
thereof.

Each source field (or portion of a field) used to define a superdescriptor is called a parent . From
2 to 20 parent fields or field portions may be used to define a superdiscriptor.

A superdescriptor may be defined as a unique descriptor.

A superdescriptor can be used as a superfield; that is, it can be specified in the format buffer to
determine the record’s output format.

A superdescriptor description has the following syntax:

where

name is the superdescriptor name. The naming conventions for
superdescriptors are identical to those for Adabas names.

UQ indicates that the superdescriptor is to be defined as unique (see the
definition option UQ).

XI indicates that the uniqueness of the superdescriptor is to be
determined with the index (occurrence) number excluded.

parent-field is the name of a parent field from which a superdescriptor element
is to be derived; up to 20 parent fields can be specified.

begin* is the relative byte position within the field where the
superdescriptor element begins.

end* is the relative byte position within the field where the
superdescriptor element is to end.

* Counting is from left to right beginning with 1 for fields defined with alphanumeric or
wide-character format, and from right to left beginning with 1 for fields defined with numeric or
binary format. For any parent field except those defined as "FI", any begin and end values
within the range permitted for the parent field’s data type are valid.

A parent field of a superdescriptor can be

an elementary field; or

30

Optional Field Definition StatementsCOMPRESS: Create an Adabas File

a maximum of one multiple-value field (but not a specific multiple-value field value);

within a periodic group (but not a specific occurrence);

a descriptor.

A parent field of a superdescriptor cannot be

a super-, sub-, or phonetic descriptor;

format G (floating point);

an NC option field if another parent field is an NU option field;

a long alphanumeric (LA) field.

If a parent field with the NU option is specified, no entries are made in the superdescriptor’s
inverted list for those records containing a null value for the field. This is true regardless of the
presence or absence of values for other superdescriptor elements.

If a parent field is not initialized and logically falls past the end of the physical record, the
inverted list entry for that record is not generated for performance reasons. To generate the
inverted list entry in this case, it is necessary to unload short, decompress, and reload the file; or
use an application program to initialize the field for each record of the file.

The total length of any superdescriptor value may not exceed 253 bytes (alphanumeric) or 126
bytes (binary).

The superdescriptor format is B (binary) if no element of the superdescriptor is derived from an
A (alphanumeric) or W (wide-character) parent field; if any element of the superdescriptor is
derived from an A or W parent field, the format of the superdescriptor reflects the last occurring
A or W element; for example, if the last occurring A or W element is W, the format of the
superdescriptor is W.

All binary format superdescriptor values are treated as unsigned numbers.

The ADACMP SUPDE= statement may be continued on another line by specifying a minus (-)
after an argument just before the closing apostrophe on the first line. Then enter the remaining
positional arguments enclosed in apostrophes on the following line beginning after the statement
name (ADACMP). For example:

ADACMP SUPDE=’SI=AA(10,20),BB(20,21),-’
ADACMP ’CC(12,13),DD(14,15)’

Superdescriptor Definition Example 1:

Field definitions:

31

COMPRESS: Create an Adabas FileOptional Field Definition Statements

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Superdescriptor definition:

SUPDE=’SD=LN(1,4),ID(3,4),AG(2,3)’

Superdescriptor SD is to be created. The values for the superdescriptor are to be derived from
bytes 1 to 4 of field LN (counting from left to right), bytes 3 to 4 of field ID (counting from
right to left), and bytes 2 to 3 of field AG (counting from right to left). All values are shown in
hexadecimal.

LN ID AG SD

C6D3C5D4C9D5C7 00862143 F0F4F3 C6D3C5D40086F0F4

D4D6D9D9C9E2 02461866 F0F3F8 D4D6D9D90246F0F3

D7C1D9D2C5D9 00000000 F0F3F6 No value is stored (because of ID)

404040404040 00432144 F0F0F0 No value is stored (because of LN)

C1C1C1C1C1C1 00000144 F1F1F1 C1C1C1C10000F1F1

C1C1C1C1C1C1 00860000 F0F0F0 C1C1C1C10086F0F0

The format for SD is alphanumeric since at least one element is derived from a parent field
defined with alphanumeric format.

Superdescriptor Definition Example 2:

Field definitions:

FNDEF=’01,LN,20,A,DE,NU’ Last-Name
FNDEF=’01,FN,20,A,MU,NU’ First-Name
FNDEF=’01,ID,4,B,NU’ Identification
FNDEF=’01,AG,3,U’ Age
FNDEF=’01,AD,PE’ Address
FNDEF=’02,CI,20,A,NU’ City
FNDEF=’02,ST,20,A,NU’ Street
FNDEF=’01,FA,PE’ Relatives
FNDEF=’02,NR,20,A,NU’ R-Last-Name
FNDEF=’02,FR,20,A,MU,NU’ R-First-Name

Superdescriptor definition:

SUPDE=’SY=LN(1,4),FN(1,1)’

Superdescriptor SY is to be created from fields LN and FN (which is a multiple-value field). All
values are shown in character format.

32

Optional Field Definition StatementsCOMPRESS: Create an Adabas File

LN FN SY

FLEMING DAVID FLEMD

MORRIS RONALD RON MORRR MORRR

WILSON JOHN SONNY WILSJ WILSS

The format of SY is alphanumeric since at least one element is derived from a parent field
defined with alphanumeric format.

Superdescriptor Definition Example 3:

Field definitions:

FNDEF=’01,PN,6,U,NU’
FNDEF=’01,NA,20,A,DE,NU’
FNDEF=’01,DP,1,B,FI ’

Superdescriptor definition:

SUPDE=’SZ=PN(3,6),DP(1,1)’

Superdescriptor SZ is to be created. The values for the superdescriptor are to be derived from
bytes 3 to 6 of field PN (counting from right to left), and byte 1 of field DP. All values are
shown in hexadecimal.

PN DP SZ

F0F2F4F6F7F2 04 F0F2F4F604

F8F4F0F3F9F8 00 F8F4F0F300

F0F0F0F0F1F1 06 F0F0F0F006

F0F0F0F0F0F1 00 F0F0F0F000

F0F0F0F0F0F0 00 no value is stored (because of
PN)

F0F0F0F0F0F0 01 no value is stored (because of
PN)

The format of SZ is binary since no element is derived from a parent field defined with
alphanumeric format. A null value is not stored for the last two values shown because the
superdescriptor option is NU (from the PN field) and the PN field value contains unpacked
zeros (X’F0’), the null value.

Superdescriptor Definition Example 4:

Field definitions:

FNDEF=’01,PF,4,P,NU’
FNDEF=’01,PN,2,P,NU’

33

COMPRESS: Create an Adabas FileOptional Field Definition Statements

Superdescriptor definition:

SUPDE=’SP=PF(3,4),PN(1,2)’

Superdescriptor SP is to be created. The values for the superdescriptor are to be derived from
bytes 3 to 4 of field PF (counting from right to left), and bytes 1 to 2 of field PN (counting from
right to left). All values are shown in hexadecimal.

PF PN SP

0002463F 003F 0002003F

0000045F 043F 0000043F

0032464F 000F No value is stored (because of
PN)

0038000F 044F 0038044F

The format of SP is binary since no element is derived from a parent field defined with
alphanumeric format.

Superdescriptor Definition Example 5:

Field definitions:

FNDEF=’01,AD,PE’
FNDEF=’02,CI,4,A,NU’
FNDEF=’02,ST,5,A,NU’

Superdescriptor definition:

SUPDE=’XY=CI(1,4),ST(1,5)’

Superdescriptor XY is to be created from fields CI and ST. All values are shown in character
format.

CI ST XY

(1st occ.) BALT (1st occ.) MAIN BALTMAIN

(2nd occ.) CHI (2nd occ.) SPRUCE CHI SPRUC

(3rd occ.) WASH (3rd occ.) 11TH WASH11TH

(4th occ.) DENV (4th occ.) bbbbb No value stored (because of ST)

The format of XY is alphanumeric since at least 1 element is derived from a parent field which
is defined with alphanumeric format.

SUPFN: Superfield Definition

A superfield is a field composed of several fields, portions of fields, or combinations thereof,
which may be read using an Adabas read command. A superfield cannot

34

Optional Field Definition StatementsCOMPRESS: Create an Adabas File

be updated;

comprise fields defined with the NC option if another parent field has the NU option;

be used as a descriptor.

A superfield can be changed to a superdescriptor using the ADAINV utility function INVERT
SUPDE=....

A superfield is defined using the following syntax:

where

name superfield name. The naming conventions for superfields are
identical to those for Adabas names.

parent-field name of the field from which a superfield element is to be derived.

begin* relative byte position within the field where the superfield element
is to begin.

end* relative byte position within the field where the superfield element
is to end.

* Counting is from left to right beginning with 1 for fields defined with alphanumeric or
wide-character format, and from right to left beginning with 1 for fields defined with numeric or
binary format.

A parent field of a superfield can be

a multiple-value field

contained within a periodic group

A parent field of a superfield cannot be format G (floating point).

The total length of any superfield value may not exceed 253 bytes (alphanumeric) or 126 bytes
(binary).

The superfield format is B (binary) if no element of the superfield is derived from an A
(alphanumeric) or W (wide-character) parent field; if any element of the superfield is derived
from an A or W parent field, the format of the superfield reflects the last occurring A or W
element; for example, if the last occurring A or W element is W, the format of the superfield is
W.

35

COMPRESS: Create an Adabas FileOptional Field Definition Statements

Superfield Definition Example:

SUPFN=’X2=AA(1,2),AB(1,4),AC(1,1)’

ADACMP COMPRESS Examples
Example 1:

ADACMP COMPRESS
ADACMP FNDEF=’01,AA,7,A,DE,FI’ Field AA
ADACMP FNDEF=’01,AB,15,A,DE,MU,NU’ Field AB
ADACMP FNDEF=’01,GA’ Group GA
ADACMP FNDEF=’02,AC,15,A,NU’ Field AC
ADACMP FNDEF=’02,AD,2,P,FI’ Field AD
ADACMP FNDEF=’02,AE,5,P,NU’ Field AE
ADACMP FNDEF=’02,AF,6,W’ Field AF
ADACMP COLDE=’7,Y1=AF’ Collation descriptor Y1
ADACMP SUBDE=’BB=AA(1,4)’ Subdescriptor BB
ADACMP SUPDE=’CC=AA(1,4),AD(1,1)’ Superdescriptor CC
ADACMP HYPDE=’1,DD,4,A,MU=AB,AC,AD’ Hyperdescriptor DD
ADACMP PHONDE=’EE(AA)’ Phonetic descriptor EE
ADACMP SUBFN=’FF=AA(1,2)’ Subfield FF
ADACMP SUPFN=’GG=AA(1,4),AD(1,1)’ Superfield GG

Field AA is defined as level 1, 7 bytes alphanumeric, descriptor, fixed storage option.

Field AB is defined as level 1, 15 bytes alphanumeric, descriptor, multiple value field, null
value suppression.

GA is a group containing fields AC, AD, AE, and AF.

BB is a subdescriptor (positions 1-4 of field AA).

CC is a superdescriptor (positions 1-4 of field AA and position 1 of field AD).

DD is a hyperdescriptor consisting of fields AB, AC and AD. DD is assigned
hyperexit 1.

EE is a phonetic descriptor derived from field AA.

FF is a subfield (positions 1-2 of field AA).

GG is a superfield (positions 1-4 of AA and position 1 of AD).

Y1 is a collation descriptor for AF and is assigned to collation descriptor user exit 7
(CDX07).

Example 2:

ADACMP COMPRESS
ADACMP FORMAT=’AG,6,U,AF,4X,AA,’ input record format
ADACMP FORMAT=’AB,AC’ continuation of FORMAT statement
ADACMP FNDEF=’01,AA,10,A,NU’ field definitions
ADACMP FNDEF=’01,AB,7,U,NU’
ADACMP FNDEF=’01,AF,5,P,NU’
ADACMP FNDEF=’01,AG,12,P,NU,DE’
ADACMP FNDEF=’01,AC,3,A,NU,DE’

36

ADACMP COMPRESS ExamplesCOMPRESS: Create an Adabas File

The input record format is provided explicitly using the FORMAT parameter. ADACMP uses this format
as the basis for processing fields from the input record. The FDT for the file corresponds to the structure
specified in the FNDEF statements.

Example 3:

ADACMP COMPRESS
ADACMP FORMAT=’AG,AF,4X,AA,AB,AC’ input record format
ADACMP FDT=8 FDT same as file 8

The input record format is provided explicitly using the FORMAT parameter. The FDT to be used is the
same as that currently defined for Adabas file 8.

Example 4:

ADACMP COMPRESS NUMREC=2000,USERISN
ADACMP FNDEF=’01,AA,7,A,DE,FI’ Field AA
ADACMP FNDEF=’01,AB,15,A,DE,MU,NU’ Field AB

The number of input records to be processed is limited to 2,000. The ISN for each record is to be provided
by the user.

Example 5:

ADACMP COMPRESS RECFM=FB,LRECL=100
ADACMP FNDEF=’01,AA,7,A,DE,FI’ Field AA
ADACMP FNDEF=’01,AB,15,A,DE,MU,NU’ Field AB

A VSE input file contains fixed length (blocked) records. The record length is 100 bytes.

37

COMPRESS: Create an Adabas FileADACMP COMPRESS Examples

	COMPRESS: Create an Adabas File
	Optional Parameters and Subparameters
	Essential Data Definition Syntax
	
	level
	name
	length
	format
	 DE: Descriptor
	 FI: Fixed Storage
	 LA: Long Alpha Option
	 MU: Multiple-Value Field
	Example of MU usage with NU:
	Example of MU usage without NU:
	 NU: Null Value Suppression
	 NV: No Conversion
	 PE: Periodic Group
	Periodic Group "GA":
	Periodic Group "GB":
	 UQ: Unique Descriptor
	 XI: Exclude Instance Number
	Examples:
	 NC: SQL Null Value Option
	 Null Indicator Value
	Example:
	 NN: SQL Not Null Option

	Optional Field Definition Statements
	
	Example:
	INITIALIZE function
	ENCODE function
	DECODE function
	Collation Descriptor Syntax
	Collation Descriptor Definition Example:
	Example:
	Hyperdescriptor Syntax
	Hyperdescriptor Definition Example:
	Phonetic Descriptor Definition Example:
	Subdescriptor Definition Example 1:
	Subdescriptor Definition Example 2:
	Subdescriptor Definition Example 3:
	Subfield Definition Example:
	Superdescriptor Definition Example 1:
	Superdescriptor Definition Example 2:
	Superdescriptor Definition Example 3:
	Superdescriptor Definition Example 4:
	Superdescriptor Definition Example 5:
	Superfield Definition Example:

	ADACMP COMPRESS Examples
	
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Example 5:

